Research

My PhD research lied predominantly in self-interference cancellation hardware to enable low-power Simultaneous Transmit and Receive (STAR) MRI but also expanded into metamaterials, RF coil feeding circuits, electric impedance tomography (EIT) circuits, passive RF circuits for improving RF coil isolation, and the application of dielectric loading for passive RF coil isolation

My dissertation, titled "An Android-enabled modular self-interference cancellation system for standalone simultaneous transmit and receive multichannel magnetic resonance imaging at 1.5T" will be posted shortly 

Publications

Demonstrated is a standalone RF self-interference canceller for simultaneous transmit and receive (STAR) magnetic resonance imaging (MRI) at 1.5T. Standalone STAR cancels the leakage signal directly coupled between transmit and receive RF coils. A cancellation signal, introduced by tapping the input of a transmit coil with a power divider, is manipulated with voltage-controlled attenuators and phase shifters to match the leakage signal in amplitude, 180° out of phase, to exhibit high isolation between the transmitter and receiver. The cancellation signal is initially generated by a voltage-controlled oscillator (VCO); therefore, it does not require any external RF or synchronization signals from the MRI console for calibration. The system employs a field programmable gate array (FPGA) with an on-board analog to digital converter (ADC) to calibrate the cancellation signal by tapping the receive signal, which contains the leakage signal. Once calibrated, the VCO is disabled and the transmit signal path switches to the MRI console for STAR MR imaging. To compensate for the changes of parameters in RF sequences after the automatic calibration and to further improve isolation, a wireless user board that uses an ESP32 microcontroller was built to communicate with the FPGA for final fine-tuning of the output state. The standalone STAR system achieved 74.2 dB of isolation with a 94 second calibration time. With such high isolation, in-vivo MR images were obtained with approximately 40 mW of RF peak power.

This paper presents a miniaturized, tunable, high-power, eight-port hybrid coupler, based on a lumped element hybrid coupler topology. The 90° hybrid couplers are ubiquitous elements used for feeding RF coils in quadrature in magnetic resonance imaging (MRI) systems. Due to the low Larmor frequency (64 MHz) of 1.5 T MRI, distributed elements are too large for practical circuits to drive multi-port RF coils. Thus, miniaturization with MRI-compatible, non-magnetic, and high-power components is necessary. First, a miniaturized hybrid coupler is proposed for MRI systems with non-magnetic variable capacitors. Afterwards, the miniaturization methodology is applied to develop an eight-port coupler, capable of supporting both a transmit and a receive quadrature RF coil system. The high-power (up to 1 kilowatt) extended coupler measures 10 cm × 6 cm. Test results show that each port has a return loss of more than 16 dB, each input-isolated port is isolated by more than 24 dB, and each output has an insertion loss of less than 2.5 dB and output phases of 0.0°, 90.8°, 182.1°, and 278.7°.


Magnetic resonance imaging (MRI) requires spatial uniformity of the radiofrequency (RF) field inside the subject for maximum signal-to-noise ratio (SNR) and image contrast. Bulky high permittivity dielectric pads (HPDPs) focus magnetic fields into the region of interest (ROI) and increase RF field uniformity when placed between the patient and RF coils in the MR scanner. Metamaterials could replace HPDPs and reduce system bulkiness, but those in the literature often require a complicated fabrication process and cannot conform to patient body shape. Proposed is a flexible metamaterial for brain imaging made with a scalable fabrication process using conductive paint and a plastic laminate substrate. The effects of single and double-sided placement of the metamaterial around a human head phantom were investigated in a 3 T scanner. When two metamaterial sheets were wrapped around a head phantom (double-sided placement), the total average signal in the resulting image increased by 10.14% compared to placing a single metamaterial sheet underneath the phantom (single-sided placement). The difference between the maximum and minimum signal intensity values decreased by 57% in six different ROIs with double-sided placement compared to single-sided placement.

Simultaneous Transmit and Receive (STAR) requires high decoupling between the RF transmitter and receiver. Current methods for this include, but are not limited to: geometric isolation, active RF leakage cancellation and metamaterial decoupling. The presented method uses a passive, four-port, tunable canceller circuit to achieve upwards of 40 dB of isolation between a quadrature transmit coil pair and the single receiving coil for a 1.5T system.